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Abstract: We present the first study of the effects of pain on the classification of fNIRS
recordings, and evaluate the performance of a model trained on the pain-free data for clas-
sifying the data with the presence of pain. © 2020 The Author(s)

1. Introduction

Functional near infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique, which indirectly mea-
sures brain activities through monitoring the changes in the concentration of the cerebral oxygenated hemoglobin
([∆HbO]) and deoxygenated hemoglobin ([∆HbR]) [1]. Recently, there has been a growing interest in using fNIRS
in brain computer interfaces (BCIs). The goal of a BCI is to convert signals recorded from the brain into commands
for controlling external devices [2, 3]. Therefore, accurate classification of brain signals is of a great interest in
BCI applications. On the other hand, a group of BCI users are patients (e.g. those with motor disabilities) that un-
fortunately could also suffer from pain due to their injuries. The presence of pain however, is expected to influence
brain activities, which could consequently impact the performance of BCIs.

In this study, we investigate how the presence of pain affects the classification accuracy of fNIRS data cor-
responding to a mental arithmetic task, for the first time. fNIRS data is collected from 2 healthy subjects, and
thermal stimulation is used to induce pain. The mean of the [∆HbR] signal from all channels is used as the fea-
ture for classification. A Support Vector Machine classifier with quadratic kernel (QSVM) is employed to classify
the data. Our classification results demonstrate that the average classification accuracy for a model that is trained
based on pain-free data, is significantly reduced when tested on the data obtained in the presence of pain. These
results suggest that a BCI algorithm which is trained and developed using pain-free data, might perform poorly
in the presence of pain. Therefore, it is important to consider the pain factor for adapting a BCI algorithm for pa-
tients. The rest of the paper is organized as follows: The experimental paradigm and the data collection procedures
are described in Section 2. Pre-processing and classification methods are explained in Section 3, and results and
discussions are presented in Section 4.

2. Experimental Design

Two healthy right-handed subjects participated in the experiment. Written informed consents approved by the Rut-
gers’ Institutional Review Board (IRB) were obtained prior to the experiments. fNIRS signals were recorded via
NIRx System (NIRScout, NIRx Medical Technologies, LLC, wavelengths of 760 nm and 830 nm) at a sampling
rate of 10.41 Hz. Sixteen sources and twenty-four detectors were placed over the prefrontal and motor cortices
resulting in a total of 50 channels (Fig. 1-a, the same configuration was used on the other hemisphere). Pain was
induced through applying heat to the skin (via TSA-II from Medoc). The pain threshold and tolerance in subjects
were measured prior to fNIRS recording sessions, and the average of threshold and tolerance temperatures was
considered as the pain temperature (average over subjects = 46.4◦C). The fNIRS experiment included 5 pain-free
and 5 pain blocks that were implemented in random orders. In each block, subjects were instructed to perform
mental arithmetic tasks shown on the screen (mental subtraction of a two-digit number from a three-digit number,
or counting backward starting from a two-digit number). During the pain blocks, the subjects were exposed to the
thermal pain while they were performing the mental arithmetic tasks. Each trial consisted of 6 sec post-stimulus
mental arithmetic interval followed by a rest interval of 10−12 sec (see Fig. 1-b). In each block, 13 trials of each
class (subtraction/backward counting) were performed by each subject (65 trials for each class).

3. Method

fNIRS data from [−1,6] sec interval, where 0 is the stimulus onset, was selected from each trial and pre-processed
using nirsLAB [4]. The data was first corrected for drifts and artifacts and then filtered using a [0.01,0.2] Hz
band-pass filter to remove the cardiac signal and low-frequency oscillations. Using the modified Beer-Lambert
law [1], the filtered optical intensity data was converted to the [∆HbO] and [∆HbR]. For each trial, the data was
then baseline corrected by subtracting the baseline from the original data. The baseline was considered the average
of 1 sec of the signal before the onset of the stimulus.



(a) (b)

Fig. 1: (a)- Optodes placement and channel configuration covering prefrontal and motor cortices (red circles:
sources, blue circles: detectors,green lines: channels), (b)- visual illustration of a single trial.

For each interval, the features were considered as the mean of the [∆HbO], for all channels, and was extracted
from the interval of [0 − 6] sec. The signal mean was calculated for 1 sec windows (vectors of 50 × 1 size).
Extracted features from all trials were separated into two randomized groups for training (75%) and testing (25%).
A QSVM classifier with 5-fold cross validation was employed for the classification.

4. Results and Discussions

Three classification problems were considered: Case 1- the classifier is trained and tested under the pain-free
condition, Case 2- the classifier is trained under the pain-free condition and tested on the pain data, and Case
3- the classifier is trained and tested using pain data. Results for classification accuracy for these three cases are
summarized in Table 1.

Table 1: Classification accuracies of mental arithmetic tasks.

Case 1 Case 2 Case 3
Subject 1 88.15±2.80 50.23±3.54 87.22±2.64
Subject 2 86.73±2.52 47.48±3.87 84.31±2.99
Average 87.44±2.66 48.85±3.71 85.76±2.82

An average classification accuracy of 87.44% is achieved for the normal pain-free condition (Case 1: trained
and tested on no pain data). However, when the same classifier model was used to discriminate the pain data (Case
2), the average accuracy is significantly decreased (48.85%). This result suggests that the model that was trained
on the pain-free data is not suitable for classification of the pain data. On the other hand, using the classifier that
was trained with the pain data leads to the average accuracy of 85.76% when tested on the pain data (Case 3).
Therefore, it can be concluded that the added pain results in alteration of brain activities which makes the models
that are trained under pain-free conditions, ineffective in classification of neural signals under the pain condition.
However, the classification results for Case 3 shows that we can overcome this problem by training the classifier
under the pain condition where the changes of the brain activities associated with the pain are taken into account.
The results of this study emphasize the significance of considering the pain condition in the development BCI
algorithms in order to accommodate the technology for the specific users, and address their special needs. To the
best of our knowledge, this is the first work that studies the effects of pain on the classification of fNIRS recordings
associated with mental tasks. Our future works involves considering other feature extraction algorithms and find
features which are more robust to the pain condition.
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